
Make HTTP Request action

Documentation

The Make HTTP Request action in Zenphi allows you to make calls to external APIs and other
servers.

The action performs an HTTP request to a specified endpoint and immediately continues execution
as soon as a response is received. Use this action when you need to make a call and handle the
response without waiting for further external triggers.

Here's how it works:

Connectivity: It enables interaction with systems beyond Zenphi's built-in actions and can even
call other Zenphi flows.
HTTP Methods: It supports various HTTP request types such as GET (retrieve data), POST
(create new data), PUT (replace existing data), PATCH (update data), and DELETE (remove data).
Configuration: You need to provide the URL of the API you want to access. You can also specify
headers to send with the request.
Authentication: It offers several authentication methods, including 'no auth', 'API Key', 'bearer
token', and 'Basic Auth'.
Request Body: You can configure the body of the request with different types like 'none',
'form-data', and 'x-www-form-urlencoded'. For 'form-data', you can define if the input is text or a file.
Certificate Validation: You have the option to ignore server certificate validation for trusted
endpoints with self-signed certificates.
Response: The action will retrieve data from the specified API and typically return it as a JSON
payload. You can enable an option to receive the API response as a file (document or PDF).

To configure the action you have the following tabs available:

●​ The Settings tab is where you configure the action:
○​ API Url (required): This is the URL of the API endpoint that you want to call.
○​ Authorization (default: No Auth): Select the type of authorization that your request

needs. Often this one is left empty and authorization is instead declared in the
Headers field. Your options here are:

■​ No Auth - No authorization / Leave empty
■​ Basic Auth - Basic authentication is a simple HTTP authentication scheme

where clients provide their credentials (username and password) in a
base64-encoded format within the Authorization header of their requests

■​ API Key - API key authentication uses a unique, randomly generated string
(the API key) to identify and authenticate an application or user making
requests to an API, providing a simple and popular method for securing API
access. You commonly request the key with the API provider.

■​ Bearer token - A bearer token is a string used in HTTP authentication,
typically included in the "Authorization" header, that grants access to
protected resources, often used in OAuth 2.0 and other token-based
authentication systems.

1/4

Zenphi Make HTTP Request action Documentation​ Mikael Klambro

○​ Headers (optional): Key-value pairs that provide metadata about an API request or
response, such as content type, authorization details, and caching instructions,
helping the client and server understand and process the data effectively. Stated as
[collection key:value pairs]. Add one header item per line.

○​ Http Request Method (default:get): Also known as HTTP verbs, are a set of
instructions that tell a server what action to perform on a resource, such as
retrieving, creating, updating, or deleting data. Your options are:

■​ Get - Requests using GET should only be used to request data and
shouldn't contain a body, instead use the API Url
[domain.api/?token=parameter] . The semantics of sending a
message body in GET requests are undefined. Some servers may reject the
request with a 4XX client error response.

■​ Post - Used to send the request data to a server to create a new resource or
update an existing one.

■​ Put - Creates a new resource or replaces a representation of the target
resource with the request content. The difference between PUT and POST
is that PUT is idempotent: calling it once is no different from calling it several
times successively (there are no side effects).

■​ Head - Similar to GET, but it only retrieves the response headers (metadata)
of a resource without the actual content (the body). Useful for checking
resource existence, size, modification date, and cached validity without
downloading the resource.

■​ Patch - the HTTP PATCH method is used to apply partial modifications to an
existing resource, unlike PUT which replaces the entire resource.

■​ Delete - Used to delete a specific resource in a REST API. It is performed by
sending a DELETE request to the URL of the resource to be deleted, and
the API will remove the resource if it exists.

○​ Request body type (default:text): refers to the data sent from a client to a server.
Specify Content Type in the Request Body Content Type field. This is particularly
relevant for HTTP methods like POST, PUT, and PATCH, which are used to send
data to the server to create or modify resources. Your options are:

■​ Text - Default, this is used for sending simple text data.
■​ Binary - This is used for sending binary data, such as images, videos, or

other files.
■​ None - Essentially means that you are sending an HTTP request without

any data in the body of the request.
■​ Form-Data - A more versatile encoding scheme designed to handle complex

form submissions, including file uploads. It divides data into distinct parts,
each with its own headers, separated by a defined boundary. This format
supports both text and binary data, making it essential for forms with mixed
data types and larger payloads. While more complex than
x-www-form-urlencoded, it enables the transfer of files and diverse data
within a single HTTP request.

2

mailto:mike@seamrog.ie

Zenphi Make HTTP Request action Documentation​ Mikael Klambro

■​ x-www-form-urlencoded - a simple encoding scheme for submitting form
data. It encodes data as key-value pairs, separated by '=' and '&', with
spaces replaced by '+' and special characters percent-encoded. This format
is ideal for basic text-based data like login credentials or search queries, and
is efficient for small amounts of data. However, it cannot handle file uploads
or binary data, limiting its use to simple text inputs.

○​ Request Body (required): The body contains the data being sent to the API server.
Its content varies based on the API's requirements and the "Content-Type" header,
such as Form-Data or plain text. Essentially, it's the payload of information sent to
the server for processing.

○​ Request Body Content Type (required): Specific content type of the request. ex.
[application/json], complements the Request body type selection field.

○​ Omit charset from content-type header (optional, default:off): If you turn it on, the
charset will be removed from the content-type header.

○​ Ignore Server Certificate Validation (optional, default:off): Turning on this option
will disable all certificate validations. Only turn on this option if you trust the
destination server.

○​ Response is a file (optional, default:off): If response of the http call is a file you
should enable this field.

The Output from the action will present the following information:

●​ Status Code - HTTP status code of the response.

●​ Raw Response Headers - Raw HTTP headers of the response.

●​ Body Text - Response body as text.

●​ Body File - Response body as a file.

●​ HTTP Response Headers

○​ Access-Control-Allow-Origin - Indicates whether the response can be shared with requesting
code from the given origin

○​ Allow - Lists the set of methods supported by the resource

○​ Cache-Control - Directives for caching mechanisms in requests and responses

○​ Content-Disposition - Indicates if the content is expected to be displayed inline in the browser or as
an attachment

○​ Content-Encoding - The type of encoding used on the data

○​ Content-Language - Describes the language(s) intended for the audience

○​ Content-Length - Indicates the length of the response body in bytes

○​ Content-Range - Where in a full body message a partial message belongs

○​ Content-Security-Policy - Used to specify browser security policies

○​ Content-Type - Specifies the media type of the response body

○​ Date - The date and time at which the message was originated

○​ ETag - Entity tag for the requested resource

○​ Expires - The date/time after which the response is considered stale

3

mailto:mike@seamrog.ie

Zenphi Make HTTP Request action Documentation​ Mikael Klambro

○​ Last-Modified - The date and time the resource was last modified

○​ Link - Used to express a typed relationship with another resource

○​ Location - Used in redirection or when a new resource has been created

○​ Pragma - Implementation-specific header that may have various effects

○​ Referrer-Policy - Governs which referrer information to include with requests

○​ Refresh - Used in redirection, or when a new resource has been created

○​ Retry-After - Indicates how long the user agent should wait before making a follow-up request

○​ Server - A name for the server

○​ Set-Cookie - Used to send a cookie from the server to the user agent

○​ Strict-Transport-Security - A security header to enforce the use of HTTPS

○​ Transfer-Encoding - The form of encoding used to safely transfer the entity to the user

○​ Upgrade-Insecure-Requests - Asks for the user agent to upgrade to a more secure protocol

○​ Vary - Tells that the output is subject to change based on certain request headers

○​ WWW-Authenticate - Indicates the authentication method required to access a resource

○​ X-Content-Type-Options - Prevents the browser from MIME-sniffing a response away from the
declared content-type

○​ X-Frame-Options - Indicates whether or not a browser should be allowed to render a page in a
<frame>, <iframe>, <embed> or <object>

○​ X-XSS-Protection - Enables cross-site scripting filtering

Having an action like the Make HTTP Request allows your Zenphi workflows to interact with
systems and services beyond the pre-built actions available. A seamless connection with other
business tools and platforms, even those not directly provided through Zenphi's standard
integrations. If you need to perform a specific operation or integrate with a niche service, the HTTP
Request action lets you implement custom logic by interacting directly with APIs. It allows your
workflows to send data to external systems and receive data back, enabling more complex and
integrated automation scenarios.

Alternative action: The 'Make HTTP Request with Callback' action allows your workflow to pause
after making an API call and resume when a response is received at a provided callback URL.

 Mikael Klambro

Egoiste Zenphi Application Consultant

4

mailto:mike@seamrog.ie
mailto:mike@seamrog.ie

